2,576 research outputs found

    Equivariant Schr\"odinger Maps in two spatial dimensions

    Full text link
    We consider equivariant solutions for the Schr\"odinger map problem from R2+1\mathbb{R}^{2+1} to S2\mathbb{S}^2 with energy less than 4π4\pi and show that they are global in time and scatter

    Weighted Low-Regularity Solutions of the KP-I Initial Value Problem

    Full text link
    In this paper we establish local well-posedness of the KP-I problem, with initial data small in the intersection of the natural energy space with the space of functions which are square integrable when multiplied by the weight y. The result is proved by the contraction mapping principle. A similar (but slightly weaker) result was the main Theorem in the paper " Low regularity solutions for the Kadomstev-Petviashvili I equation " by Colliander, Kenig and Staffilani (GAFA 13 (2003),737-794 and math.AP/0204244). Ionescu found a counterexample (included in the present paper) to the main estimate used in the GAFA paper, which renders incorrect the proof there. The present paper thus provides a correct proof of a strengthened version of the main result in the GAFA paper

    Global Schr\"{o}dinger maps

    Full text link
    We consider the Schr\"{o}dinger map initial-value problem in dimension two or greater. We prove that the Schr\"{o}dinger map initial-value problem admits a unique global smooth solution, provided that the initial data is smooth and small in the critical Sobolev space. We prove also that the solution operator extends continuously to the critical Sobolev space.Comment: 60 page

    On the particle paths and the stagnation points in small-amplitude deep-water waves

    Full text link
    In order to obtain quite precise information about the shape of the particle paths below small-amplitude gravity waves travelling on irrotational deep water, analytic solutions of the nonlinear differential equation system describing the particle motion are provided. All these solutions are not closed curves. Some particle trajectories are peakon-like, others can be expressed with the aid of the Jacobi elliptic functions or with the aid of the hyperelliptic functions. Remarks on the stagnation points of the small-amplitude irrotational deep-water waves are also made.Comment: to appear in J. Math. Fluid Mech. arXiv admin note: text overlap with arXiv:1106.382

    A para-differential renormalization technique for nonlinear dispersive equations

    Full text link
    For \alpha \in (1,2) we prove that the initial-value problem \partial_t u+D^\alpha\partial_x u+\partial_x(u^2/2)=0 on \mathbb{R}_x\times\mathbb{R}_t; u(0)=\phi, is globally well-posed in the space of real-valued L^2-functions. We use a frequency dependent renormalization method to control the strong low-high frequency interactions.Comment: 42 pages, no figure
    corecore